
Towards the Decentralized and Collaborative

Training and Inference of Large Models

Aarush Gupta

May 2024

Abstract

Modern natural language tasks increasingly rely on Large Language Models (LLMs),
which often contain over one hundred billion parameters, making them impractical for use
on consumer hardware. To address this challenge, we propose a novel decentralized and
collaborative training and inference framework that leverages a peer-to-peer network to
democratize access to these models, akin to Bitcoin. Our approach decomposes the compu-
tation of neural networks into smaller segments, specifically by splitting the forward pass
over parameters and the backward pass by using the computed Directed Acyclic Graph
(DAG). This methodology enables a sequence of computations across the network, facili-
tating weight aggregation through neighboring peers. Additionally, we introduce a set of
optimizations tailored to the specific requirements of LLMs, including the parallelization
of the attention mechanism. Practical aspects such as disk representation and verification
within our untrusted system are also considered. Our contributions include a scalable and
efficient distributed framework for LLMs. This work has significant implications for making
advanced and large models more accessible and collaborative, potentially transforming fields
that rely heavily on natural language processing by providing a more equitable distribution
of computational resources.1

1 Introduction

The advent of deep learning and the recent development of expansive LLMs have revealed that
performance tends to scale proportionally with an increase in model size [16]. This has driven the
creation of modern models with hundreds of billions of parameters [6], such as the Falcon-180B,
a causal decoder-only language model with 180 billion parameters [2]. However, these models,
due to their considerable density, necessitate substantial memory and computational resources.
For instance, Falcon-180B requires 640GB of memory at 16-bit weights and 1280GB for LoRA
[11] fine-tuning.

These substantial constraints pose numerous challenges, particularly hindering the advance-
ment of open and accessible science due to the immense computational requirements. Efforts
have been made to address these issues through the quantization of pre-trained models [12] and
faster, more efficient attention layers [8]. However, these approaches result in the loss of learned
features or necessitate the laborious design of kernels at the GPU level. Consequently, there is a
pressing need for a more optimized training and inference regime, as traditional approaches that
work on specific components often come with significant drawbacks.

In this whitepaper, we propose a novel training and inference strategy, drawing inspiration
from the peer-to-peer architecture of Bitcoin [15], parallel computation methodologies for LLMs

1The webpage for the foundation established to build this whitepaper is available at this https URL.

1

https://openvector.xyz


Figure 1: Complete step of training a transformer in our system.

[14], and the concept of Proof-of-Learning [13]. Our approach conceptualizes training an LLM
based on the transformer architecture [18] as a linked list ledger, similar to Bitcoin, by partition-
ing the forward and backpropagation passes. This strategy allows us to preserve the optimiza-
tions inherent in Bitcoin’s ledger system and network while introducing an incentive mechanism
for participants who contribute GPUs to the system. It also enables us to maintain efficient
computation at scale. We then discuss the advantages of our framework, including anonymous
inference, democratized and decentralized training, and the promotion of open science.

2 Model

We begin with mathematical models of the nature of our novel decentralized framework as shown
in Figure 1.

2.1 Splitting Computation

In a decentralized setting, we must represent the neural network in a scalable format that dis-
tributes computation across the peer network. Bitcoin represents its list of transactions as a
linked list ledger. We inherit this and modify it to fit our task of peer-to-peer training and
inference. We begin with the forward pass of any given input x, which is computed for both
training and inference. If we let f denote a given layer of a sequential neural network, we can
represent any network as {f1, f2, . . . , fn}, where n is the total number of layers. Therefore, a
forward pass of a conventionally trained neural network can be represented as:

h1 = f1(x), h2 = f2(h1), . . . , hn = fn(hn−1) (1)

To distribute compute across peers, we can trivially split this forward pass into computationally
smaller sections. We partition the layers into k sections. We define Si as the i-th section
containing layers with indices {i1, i2, . . . , ip}. Hence, each section Si computes as:

hSi = fip(. . . fi2(fi1(hSi−1)) . . .) (2)

This assumes that each k section will require equal compute and that all n layers have equal
parameters. This is often not true. Therefore, we must partition the layers into k sections

2



such that each section has an approximately equal number of parameters. Let P (fi) denote the
number of parameters in layer fi. The total number of parameters Ptotal in the network can be
expressed as:

Ptotal =

n∑
i=1

P (fi) (3)

Hence, we aim to divide the layers into k sections {S1, S2, . . . , Sk} such that the sum of parameters
in each section is approximately Ptotal

k . Each section Si still computes as defined in (2). The
condition for splitting is defined as: ∑

j∈Si

P (fj) ≈
Ptotal

k
(4)

This can be achieved by an analysis of the model architecture before runtime. Our proposed
solution is to compute weights in the same layer in parallel across nodes and step through layers
sequentially in that fashion. Through this methodology, we would achieve the list of computations
as shown in Figure 1, wherein a given section would contain a computation for a layer and clusters
of sections would form the computation for the full layer.

The added benefit of partitioning by parameters rather than layers is that it allows each
block in the resulting list of computations to be nearly equal in size. This consequently allows us
to make assumptions and optimizations on disk representations of the model and in networking
between peers. The last peer to compute section Sk would also compute the loss, for it is
not computationally expensive. Any validation phases of training can be run with this same
framework, swapping out input data sources as necessary.

As for computing the backpropagation of the model, we can employ the computed DAG.
Each node in the DAG corresponds to a layer, and edges represent the dependency of gradient
computations. To split the backward pass, we partition the DAG into the k sections delimited
when splitting the forward pass. Each section Si will compute the gradients for its layers and pass
the gradient information to the previous section. If we let ∇LSi denote the gradients computed
in section Si, we arrive at the following representation of the backpropagation pass for section
Si as:

∇hSi−1
=

∑
j∈Si

∇hSi−1
fj(hSi−1

) · ∇LSi
(5)

This enables us to rely on the split over parameters defined in (4) and adapt it for computing
gradients over the same sections.

2.2 Weight Aggregation

Due to the decentralized nature of our process, aggregating the weights is crucial to ensure peers
maintain the same model across the network. We begin with a model of training a neural network
with gradient descent. If we let w represent the weights of the neural network, we arrive at the
following conventional update rule:

w
(t+1)
i = w

(t)
i − η∇wi

L(w(t)
i ,Di) (6)

where η is the learning rate, and L is the loss function. However, our goal is to decentralize this
training among numerous peers. If we let N (i) represent the set of peers connected to peer i, we
achieve a model of decentralized communication and aggregation of weights from neighbors as:

w
(t+1)
i =

∑
j∈N (i)

αijw
(t)
j (7)

3



where αij are the aggregation weights satisfying
∑

j∈N (i) αij = 1. If we combine (6) and (7), we
arrive at the following update rule for given peer i and dataset D:

w
(t+1)
i =

∑
j∈N (i)

αij(w
(t)
j − η∇wj

L(w(t)
j ,Dj)) (8)

Through this framework, we can express the update rule for optimizing weights in a decentralized
manner.

2.3 Optimizations

Our work thus far addresses general neural networks. However, we can optimize our process
for the more prevalent LLM and transformer architecture. As discussed in [14], the attention
mechanism presented in the original transformer paper can be parallelized to enhance its compu-
tational efficiency, which is particularly crucial in our decentralized setting. We begin by recalling
multi-head attention as follows:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O (9)

with each head computed as:

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (10)

where WQ
i ,WK

i ,WV
i are learned projection matrices. Note that the computation for each in-

dividual head can be done on separate nodes and are not interdependent on one another. The
nature of the attention mechanism also allows parallelization across the sequence length. Let n
be the length of the input sequence. We can split the sequence into k segments of equal length
and distribute these to different nodes for parallel computation. For segment Si of the input
sequence, the attention computation can be thereby be expressed by computing the learned
project matrices WQ

i ,WK
i ,WV

i for each segment rather than the complete input x. Each seg-
ment’s attention computation is independent of the others and can be distributed across k nodes,
computed, then aggregated, as described in (9).

3 Additional Notes

In this section, we discuss some additional considerations to be made in the practical implemen-
tation of this process in the real world.

3.1 Disk Representation

Our training and inference regime is inspired by the Bitcoin system and therefore, we inherit the
data structure representation of our ”ledger” as a Merkle Tree as well. Recall that a Merkle Tree
works on hashes. Therefore, we must similarly hash each block of computation. We delimit a
block to represent one unit of computation, whether that be of the forward pass, backward pass,
or attention. These hashes form the leaf nodes of the tree and internal nodes are constructed
by concatenating the hashes of their child nodes and block data. For example, for leaf nodes L1

and L2, the hash of the parent node would be computed as:

Hparent = H(H(L1)∥H(L2)) (11)

Therefore, the root of the Merkle Tree would represent the combined hash of all subsequent
computations.

4



3.2 Verification

To trace those who computed specific blocks, the public key of that party will be stored with
the hash in the Merkle Tree. To verify the integrity of a specific section of the computation,
we only require the hashes along the path from the leaf node representing that section to the
root of the Merkle Tree. This allows efficient verification without needing to recompute the
entire model. Bad actors may attempt to poison model training with bad data sources alongside
numerous other potential attacks. Proof-of-Learning, as outline in [13], uses metadata from the
gradient-based optimization processes to construct certifications of work, which can be used to
verify whether productive learning occured.

This would enable the network to verify: a) whether a given list of computations is valid.
This would be crucial when a new node is introduced into the system and requires updates, or
when a node comes online after a period where it was not being updated, and b) whether a new
block of computation is valid before reaching consensus.

We maintain the optimizations utilized by Bitcoin in its implementation of the Merkle Tree,
such as storing only the root block’s hash with every new block and pruning redundant blocks.
This approach supports the conclusion that block headers can be stored in memory, leveraging
the proliferation of available memory, year-over-year.

3.3 Dataset

The dataset used to train the model can be stored in another distributed file store like IPFS [3],
perhaps chunked for decentralized processing before runtime by the network or another research
group. Our work concerns with the training and inference of a given model and not necessarily
data and its implementation is left as an open question.

3.4 Incentive

Alongside our process for training and inference of large models, we introduce a incentive over
our network. An incentive would motivate nodes to support the network, expending GPU time
and electricity in exchange for value. It would also maintain a steady distribution of value during
training.

Hence, we also introduce a cryptocurrency to fuel our network. Its implementation can follow
or be built on the numerous chains [7] that already exist. We envision that this currency will be
given value as typical cryptocurrencies are, but have added value in that they enable inference.
To reward early nodes in the system during training, each added block will grant the computing
party a reward proportional to compute, which can be expended back into the network when
inference is possible. Computational work will be generally equal across blocks, given that we
can split computation equally based on parameters as described in Section 2.1. Therefore, it
makes logical sense to reward one coin per block computed and let the free market economy
formed dictate the monetary value.

However, in the spirit of open science, the resulting model’s weights will be made open source.
This ensures that other researchers can utilize the trained model beyond the API we develop for
inference, allowing them to investigate the internal state or modify parameters.

5



Figure 2: Overview of inference in our network. Note how, after attention is computed, most
peers remain idle as the forward pass is computed sequentially. Also note the anonymity provided
by the system, for no one party can trace a request to an IP address.

4 Discussion

4.1 Attacks and Limitations

Similar to any untrusted decentralized system, our network is not without potential attack vec-
tors and general limitations. However, due to the inherent difficulty and high computational
cost of computing blocks, we do not foresee any sustainable attacks against the network. We
grant the longest waiting party the ability to compute a block, meaning an attacker would need
supercomputer-level capabilities to compute and append blocks faster than the honest nodes.
Given that LLMs are notorious for requiring large amounts of data [10], a genuine attempt to
attack the network would necessitate the ability to process a substantial portion of the dataset
more rapidly than thousands of other nodes.

However, a key limitation of our network lies in the nature of computing the forward and
backward sections as detailed in Section 2.1. After computing parallel attention, the individual
sections for the passes must be computed sequentially, meaning that only one node will be
performing the computation at any given time. This limitation should, in a sense, encourage
more nodes to join the network, as systems can be utilized for other tasks while waiting for their
turn to compute.

Perhaps another limitation to note is communication bandwidth between peers. We envision
nodes in the system will have high bandwidth, but the transfer of matrices across the network
remains an issue. A possible solution would be to compress matrices as detailed in [17] or
quantizing directly on activations as described in [1].

4.2 Anonymity

The decentralized nature of our network lends itself well to anonymity, partly inspired by the Tor
project’s network [9]. During inference, sections of computation will traverse the network in a
nearly random manner, thereby concealing the identity of the initiating party by hiding their IP
address. This ensures true anonymity and mitigates data mining issues. However, data privacy
remains a concern. Since every computation will be stored across the network, the inputs and
outputs of the model will also be publicly accessible. To address this, private organizations or
research groups with data privacy concerns are encouraged to perform inference on their own
hardware.

6



4.3 Related Work

We acknowledge the Petals [5] model, which similarly attempted inference and fine-tuning of
large models, but not training from scratch, and the Bittensor [4] project, which attempts the
same work as us, but by ranking peers on intrinsic informational value.

5 Conclusion

In this work, we proposed a system for the distributed training and inference of large models,
particularly LLMs, without relying on trust. We started with a mathematical model of training
a neural network and adapting it to a decentralized system. We split the forward and back-
ward pass based on paramters and computation and formed a linked list system akin to Bitcoin.
We then followed with weight aggregation and optimizations specific to LLMs and transform-
ers by parallizing attention across the network. We considered additional notes, including a disk
representation of the model, verification of productive and trustworthy learning, datasets, and in-
centives for participating in the network. We then discussed attacks, limitations, and anonymity.
Our network is robust in its unstructured simplicity and can work without coordination by any
central party. It is fault tolerant and processing computations can be done even if nodes fail.
With this whitepaper, we hope to increase the accessibility of huge and performant LLMs and
enable parties without infrastructure to use and investigate these models.

7



References

[1] Jue Wang et al. “Fine-tuning Language Models over Slow Networks using Activation Com-
pression with Guarantees”. In: (2022). arXiv: 2206.01299.

[2] Ebtesam Almazrouei et al. The Falcon Series of Language Models: Towards Open Frontier
Models. 2023.

[3] Juan Benet. “IPFS - Content Addressed, Versioned, P2P File System”. In: CoRR abs/1407.3561
(2014). arXiv: 1407.3561.

[4] “BitTensor: An Intermodel Intelligence Measure”. In: CoRR abs/2003.03917 (2020). With-
drawn. arXiv: 2003.03917.

[5] Alexander Borzunov et al. Petals: Collaborative Inference and Fine-tuning of Large Models.
2023. arXiv: 2209.01188.

[6] Tom B Brown et al. “Language models are few-shot learners”. In: (2020). arXiv: 2005.
14165.

[7] Vitalik Buterin. Ethereum White Paper: A Next Generation Smart Contract & Decentral-
ized Application Platform. 2013.

[8] Tri Dao et al. “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-
Awareness”. In: CoRR abs/2205.14135 (2022).

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The Second-Generation
Onion Router”. In: Proceedings of the 13th Usenix Security Symposium. 2004.

[10] Jordan Hoffmann et al. “Training Compute-Optimal Large Language Models”. In: (2022).
arXiv: 2203.15556 [cs.CL].

[11] Edward J. Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In: (2021).
arXiv: 2106.09685.

[12] B. Jacob et al. “Quantization and Training of Neural Networks for Efficient Integer-
Arithmetic-Only Inference”. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2018, pp. 2704–2713. doi: 10.1109/CVPR.2018.00286.

[13] Hengrui Jia et al. “Proof-of-Learning: Definitions and Practice”. In: SP. IEEE, 2021,
pp. 1039–1056. isbn: 978-1-7281-8934-5.

[14] Julian Richard Medina and Jugal Kalita. “Parallel Attention Mechanisms in Neural Ma-
chine Translation”. In: ICMLA. IEEE, 2018, pp. 547–552. isbn: 978-1-5386-6805-4.

[15] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2009.

[16] Alec Radford et al. Language Models are Unsupervised Multitask Learners. 2019.

[17] Rajarshi Saha, Varun Srivastava, and Mert Pilanci. “Matrix Compression via Randomized
Low Rank and Low Precision Factorization”. In: Thirty-seventh Conference on Neural
Information Processing Systems. 2023.

[18] Ashish Vaswani et al. “Attention is all you need”. In: Advances in Neural Information
Processing Systems. 2017, pp. 5998–6008.

8

https://arxiv.org/abs/2206.01299
https://arxiv.org/abs/1407.3561
https://arxiv.org/abs/2003.03917
https://arxiv.org/abs/2209.01188
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2106.09685
https://doi.org/10.1109/CVPR.2018.00286

	Introduction
	Model
	Splitting Computation
	Weight Aggregation
	Optimizations

	Additional Notes
	Disk Representation
	Verification
	Dataset
	Incentive

	Discussion
	Attacks and Limitations
	Anonymity
	Related Work

	Conclusion

