
Optimizing Neural Networks with Language Models

Aarush Gupta

Abstract

Language models (LMs) have demonstrated the ability to automate and en-
hance numerous tasks, but their potential in meta-optimization remains under-
explored. In this paper, we introduce Dux, the first LM-based meta-optimizer
designed to accelerate neural network training. By iteratively adjusting optimizer
parameters through efficient prompting, Dux outperforms traditional optimizers
such as Stochastic Gradient Descent (SGD) and Adam across a diverse set of
tasks. We evaluate Dux in both task-agnostic and task-informed conditions. Our
results indicate that Dux not only accelerates convergence but also improves gen-
eralization, reducing both losses for both training and evaluation datasets. Code
at https://github.com/bxptr/dux.

1 Introduction

Gradient-based optimization algorithms form the backbone of modern machine learning,
enabling the training of deep neural networks across a wide range of applications. Opti-
mizers such as stochastic gradient descent (SGD) and its variants, including momentum-
based approaches and adaptive learning rate algorithms like Adam, have significantly
advanced the stability, efficiency, and convergence speed of neural network training [2,
13, 9, 3]. However, despite their widespread success, these optimization methods are not
universal solutions to all tasks. The performance of any given optimizer often depends
heavily on specific characteristics, requiring customization and iterative tuning. The
search for optimal hyperparameters, learning rates, and update rules becomes particu-
larly challenging when working in complex decision spaces or with highly non-convex
loss landscapes. This is especially true for derivative-free optimization, where gradi-
ents are either unavailable or unreliable, making the design and selection of appropriate
optimization strategies even more critical.

The necessity of continually refining optimization algorithms highlights a key lim-
itation in the current paradigm: the process is highly task-dependent, often requiring
domain-specific knowledge and constant tuning. While advances in algorithmic tech-
niques such as learning rate schedulers and adaptive optimizers have mitigated some of
these issues, the need for human intervention remains a bottleneck in achieving efficient
and robust optimization. Addressing this challenge requires a more flexible and adap-
tive approach to optimization, which can dynamically adjust its behavior based on the
problem context without requiring constant external intervention.

Recent breakthroughs in language models (LMs) offer a promising avenue for ad-
dressing this challenge. large LMs, such as GPT-4o [1] and its successors, have demon-
strated remarkable abilities in a variety of natural language tasks via systematic prompt-
ing techniques. We consider LMs and not the ubiquitous large language models because

1



Figure 1: Simplified overview of the Dux optimization process

we hope to generalize this to smaller models. These models have shown proficiency in
reasoning, problem-solving, and knowledge synthesis, suggesting that their capabilities
could extend beyond conventional language-based tasks. The growing body of research
on prompt engineering has underscored the potential of LMs to act as general-purpose
meta-optimizers, capable of proposing and refining solutions in computational problems.

In this work, we present Dux (latin: leader, eg. leading neural networks to conver-
gence). We explore the hypothesis that large language models can serve as powerful
meta-optimizers for neural networks. Specifically, we investigate the use of LMs to iter-
atively propose novel optimization algorithms and adapt dynamically during the train-
ing process. By leveraging meta-cognitive abilities, such as reasoning over optimization
steps and providing self-feedback, we aim to create a framework where LMs refine op-
timization strategies to achieve faster and more robust convergence given training loss
metrics and a base optimizer chosen by a human.

2 Problem Setting

We can formalize the meta-optimization problem and its adaptive optimization process
as a Markov Decision Process with parameters (S,A,P), where S is the set of states, A
is the set of actions, and P represents the state transition probability function. We do
not discuss reward since we do not sample the LM in a reinforcement learning setting.

In our meta-optimization framework, the state st ∈ S at time step t consists of
the current state of the model’s training, including relevant information any relevant
information. The action at ∈ A at step t corresponds to the modification proposed by
the LM to the optimizer configuration. The LM, acting as a meta-optimizer, selects an
action at based on the observed state st to improve model performance.

The state transition is governed by the underlying training dynamics and depends on
the optimizer update and dataset of the governed neural network. The state transition
function P(st+1|st, at) captures the stochastic nature of training, where the next state
st+1 is determined by the current state st, the chosen action at, and potentially external
factors like data variability. This transition includes the model parameter update:

θt+1 = θt − ηt+1∇θL(θt),

where ηt+1 is the updated learning rate or any other optimizer adjustment proposed by
the LLM.

The policy π(at|st) is defined as loosely as a mapping from states to actions. The LM
attempts to learn an optimal policy π∗ strictly within its latent space and maximizes

2



the expected cumulative ”reward” R, or indications of convergence, over time:

π∗ = argmax
π

E

[
T∑

t=0

R(st, at)

]
,

The dynamic adaptation of the optimizer ensures that each optimization update is
contextually informed by the governed neural networks current state and performance,
thereby maximizing the long-term efficacy of the training process. By utilizing the LM
to approximate the optimal policy π∗, we can consider the training process as a meta-
optimization problem, where the LM continuously adapts the base optimizer to achieve
faster and more efficient convergence.

3 Related Works

The field of language models as general meta-optimizers for neural networks has not
been explored as deeply and no direct related works exist, as far as authors know.
However, language models have been experimented with in the subfield of hyperpa-
rameter optimization. Finding optimal hyperparameters is a well-known and notorious
problem in machine learning [5, 14, 7, 6]. Initial research largely explored model-free
regimes including random and grid search [5], and more advanced methods leveraged
multi-fidelity optimization by virtue of optimization being an iterative process [11, 8].
Language models have been introduced as a viable method to hyperparameter optimiza-
tion [18]; however, previous works do not consider deeper prompt engineering alongside
efficient context and entrusting these advanced model’s search spaces.

Prompt engineering has become an essential technique in harnessing the full poten-
tial of these models. Synonymous with this sub-field includes chain-of-thought prompt-
ing [17], zero-shot reasoning [10], and least-to-most prompting [19]. These have ex-
panded the capabilities of LMs, enabling them to tackle more complex and hierarchical
tasks. Furthermore, iterative refinement methods, such as self-consistency [16] and
self-feedback [12, 4], have demonstrated that LMs can engage in multi-step reasoning,
allowing for more sophisticated problem-solving strategies. With modern models, we
speculate that many prompting techniques have become natively integrated in propri-
etary system prompts or within training and develop independent prompting patterns.

4 Methodology

Our proposed method operates within a conventional supervised learning framework,
where a machine learning model is trained to minimize a loss function using gradient-
based optimization. Instead of using a static optimizer configuration, we introduce
the LM as a dynamic meta-optimizer, capable of adapting the optimization process
iteratively based on real-time feedback from the training loop. These proposals are
continuously integrated, without alteration, into the training loop, resulting in a closed-
loop meta-optimization process.

The overall architecture can be described in two main components. Prompt construc-
tion, wherein information about the current training state is encoded into a structured
prompt that guides the LM in generating optimizer updates, and optimizer proposal
generation and integration, wherein the LM outputs a proposed modification to the

3



Algorithm 1 Dux meta-optimization design

1: Require: Target neural network M, base optimizer O0, loss function L, language
model LM, update prompt prompt, initial training parameters η0, µ0, and neural
network targets T .

2: for each training step t do
3: Optimize LM with base or previous proposed optimizer O(t− 1)
4: Interpolate prompt with loss function metrics L(M(x), Tt)
5: Sample and apply an optimizer proposal with Ot ∼ LM(prompt)

6: end for
7: Output: optimized neural network M.

optimization process, which is then applied to, or replaces, the base optimizer in real
time. The architecture is formalized in Algorithm 1.

Prompting the LM to act as a meta-optimizer requires the construction of two types
of prompts: the system prompt and the update prompt. These prompts provide the
LM with the necessary information about the training context and recent performance
history, enabling it to generate relevant optimizer adjustments.

The system prompt encapsulates the static aspects of the training process, providing
the LM with a complete description of the governed neural network, the base optimizer,
the loss function, and optionally, the task. This supplies the LM with the broader
optimization environment. Specifically, the system prompt includes: (1) a structured
description of the neural network architecture, including the number of layers, types of
layers (e.g., convolutional, recurrent, etc.), activation functions, and output dimensions
(2) a detailed configuration of the base optimizer, which includes the optimizer type
(e.g., SGD, Adam), the initial learning rate, and other relevant hyperparameters such
as momentum or weight decay, and (3) the details on the loss function, allowing the LM
to understand the optimization target and its gradients. In practice, the loss function
maintains state, which enables historical proposals to be natively integrated within the
traditional instruction-tuned chat format of modern LMs and allows the update prompts
to contain performance data that aligns with each proposal.

As training progresses, the LM is prompted with updates that capture the recent
performance metrics and trends. This update prompt includes performance data per-
taining to the previous proposal, including n random loss values and the average gradient
norm. We specifically choose not to employ a look-back window to reduce bias towards
optimization of certain inputs. By instructing the LM to ground itself in reasoning
through comments within generated code, we forego validation of the optimizer quality
and only test for valid executable code.

The LM constantly generates a proposed adjustment to the optimizer configuration.
These modifications are primarily in the form of adjustments to the learning rate or
introduction or modification of learning rate schedulers, updates to momentum terms
or adaptive learning rate mechanisms, or proposals for switching between different op-
timization algorithms.

4



MLP on MNIST (Cross Entropy Loss)

Epoch
Control Without Task Knowledge With Task Description

Training Test Training Test Training Test
1 2.2918 2.2791 2.2899 2.2718 2.2940 2.2802
2 2.2628 2.2416 0.3389 0.1846 0.3398 0.1649
3 2.2149 2.1793 0.5247 0.3286 0.1387 0.1077
4 2.1359 2.0766 0.1253 0.1181 0.0893 0.0977
5 2.0044 1.9059 0.0738 0.0838 0.0854 0.1071

RNN on Sine (Cross Entropy Loss)

Epoch
Control Without Task Knowledge With Task Description

Training Test Training Test Training Test
1 0.8409 0.818 0.819 0.8283 0.8112 0.828
2 0.7982 0.791 0.409 0.3992 0.3955 0.4042
3 0.8129 0.7797 0.4524 0.4793 0.2816 0.2981
4 0.7867 0.7776 0.3326 0.3655 0.2555 0.2804
5 0.7582 0.771 0.3498 0.3197 0.1917 0.1826
Transformer on IMDB Sentiment Analysis (Binary Cross Entropy Loss)

Epoch
Control Without Task Knowledge With Task Knowledge

Training Test Training Test Training Test
1 0.6114 0.5699 0.6072 0.5640 0.6075 0.5628
2 0.4946 0.5493 0.5912 0.5929 0.4968 0.5447
3 0.4266 0.5431 0.4429 0.4573 0.4583 0.5223
4 0.3647 0.5402 0.3443 0.4675 0.4354 0.5162
5 0.3183 0.5407 0.2775 0.5139 0.4198 0.5152

Table 1: Training and Test Losses for Experiments

5 Experiments

Here, we present the evaluation results for Dux. Our experiments demonstrate that
Dux brings a significant performance gain. To rigorously evaluate our hypothesis, we
conducted a series of experiments: the traditional problem of fitting a Multi-Layer
Perceptron (MLP) to the MNIST dataset, training a Recurrent Neural Network (RNN)
on a sine dataset, and training a Transformer [15] on the IMDB sentiment analysis
dataset. The performance of Dux is compared against a control optimizer under two
conditions: (1) the LM without task knowledge and (2) LM with a brief task description.

The baseline optimizer is the Stochastic Gradient Descent (SGD) optimizer initial-
ized with a fixed learning rate of 0.01 and momentum of 0.9 for the first two exper-
iments and the Adam optimizer initialized with a learning rate of 0.001 and betas of
β1 = 0.9, β2 = 0.999. The meta-optimizer is employed under a default task description
and another with a brief (one to three words) description of the task. A new optimizer
is proposed every epoch. The training and test losses over five epochs for both tasks
are presented in Table 1.

In the MLP task, the baseline SGD shows slow convergence with marginal reduction
in training loss over five epochs, reflecting suboptimal learning progress. In contrast,
Dux without task-specific knowledge accelerates optimization significantly, achieving
a lower training loss by the second epoch and demonstrating its effectiveness in tun-

5



ing hyperparameters without explicit task guidance. Providing a brief task description
(”MNIST”) yields only marginal improvement, likely due to the simplicity of the task
and the limited number of epochs. For the RNN task, similar trends emerge. The con-
trol optimizer exhibits slow convergence, while Dux without task knowledge achieves a
markedly lower training loss by the fifth epoch. When provided with a brief task descrip-
tion (”RNN over sine dataset”), Dux demonstrates further improvement in optimization
efficiency. In the Transformer experiment, the control optimizer again struggles with
slow convergence. Both the task-aware (”Small transformer over IMDB sentiment”)
and task-agnostic versions of Dux perform similarly, with task knowledge providing no
significant advantage. We attribute the lack of discernable convergence in the training
loss with task knowledge to the non-deterministic nature of LMs and prompt structure.

However, the LM often indicates a strong grasp of training dynamics and predictions.
In our experiements in the RNN task, the LM switched constantly between optimizers,
hyperparameters, and schedulers. By epoch 2, it identified the Adam optimizer as more
viable to convergence and played with hyperparameters before switching to RMS Prop
and then AdamW. This constant adaptation is infeasible in current training regimes
and meta-optimizers offer dynamic context-based convergence.

Experimental results demonstrate the effectiveness of our methodology. Several key
observations emerge from the empirical evaluation. Across both tasks, Dux leads to
significantly faster convergence compared to the control optimizer. This is particularly
evident in the early epochs, where the we achieve substantial reductions in both training
and test losses. We believe the reduction in overfitting evident in lower test losses stems
from the LM’s ability to balance exploration and exploitation during the optimization
process.

6 Conclusion

In this work, we introduced Dux, a novel meta-optimizer based on language models
and demonstrated its effectiveness across diverse neural network training tasks. By
leveraging LMs to iteratively adjust optimizer parameters, regimes, and scheduling, Dux
achieves faster convergence compared to traditional static optimizers. The experimental
results consistently show that Dux outperforms baseline optimizers, particularly in the
early stages of training.

While Dux shows great promise, especially in optimizing simpler architectures or
tasks with limited training epochs, the marginal gains observed in more complex models
like Transformers suggest that future work is needed to refine the method for larger-scale
problems. Specifically, exploring deeper integration of task knowledge or developing
mechanisms for automated task understanding could further enhance Dux’s effectiveness
in more challenging settings.

Overall, this work represents a significant step toward bridging language-based mod-
els with optimization processes, offering a promising interdisciplinary approach that
can accelerate and improve neural network training across a wide spectrum of machine
learning tasks.

6



References

[1] OpenAI et al. GPT-4 Technical Report. 2024.

[2] Shun-ichi Amari. “Backpropagation and stochastic gradient descent method”. In:
Neurocomputing (1993).

[3] Thomas Bäck and Hans-Paul Schwefel. “An overview of evolutionary algorithms
for parameter optimization”. In: Evolutionary computation (1993).

[4] Yuntao et al. Bai. “Constitutional AI: Harmlessness from AI Feedback”. In: arXiv
(2022).

[5] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter opti-
mization”. In: JMLR (2012).

[6] Bernd et al. Bischl. “Hyperparameter optimization: Foundations, algorithms, best
practices”. In: Wiley (2023).

[7] Matthias Feurer and Frank Hutter. “Hyperparameter optimization”. In: Auto-
mated ML (2019).

[8] Kevin Jamieson and Ameet Talwalkar. “Non-stochastic best arm identification
and hyperparameter optimization”. In: AISTATS. 2016.

[9] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: ICLR. 2015.

[10] Takeshi et al. Kojima. “Large language models are zero-shot reasoners”. In: arXiv
(2022).

[11] Lisha et al. Li. “Hyperband: A novel bandit-based approach to hyperparameter
optimization”. In: JMLR (2017).

[12] Aman et al. Madaan. “Self-Refine: Iterative Refinement with Self-Feedback”. In:
arXiv (2023).

[13] Ning Qian. “On the momentum term in gradient descent learning algorithms”.
In: Neural networks (1999).

[14] Jasper et al. Snoek. “Practical bayesian optimization of machine learning algo-
rithms”. In: NeurIPS (2012).

[15] Ashish et al. Vaswani. “Attention Is All You Need”. In: CoRR (2017).

[16] Xuezhi et al. Wang. “Self-consistency improves chain of thought reasoning in
language models”. In: arXiv (2022).

[17] Jason et al. Wei. “Chain of thought prompting elicits reasoning in large language
models”. In: arXiv (2022).

[18] Michael R et al. Zhang. Using Large Language Models for Hyperparameter Opti-
mization. 2023.

[19] Denny et al. Zhou. “Least-to-most prompting enables complex reasoning in large
language models”. In: arXiv (2022).

7


	Introduction
	Problem Setting
	Related Works
	Methodology
	Experiments
	Conclusion

